-module(gleam@order). -compile([no_auto_import, nowarn_unused_vars, nowarn_unused_function, nowarn_nomatch, inline]). -define(FILEPATH, "src/gleam/order.gleam"). -export([negate/1, to_int/1, compare/2, reverse/1, break_tie/2, lazy_break_tie/2]). -export_type([order/0]). -if(?OTP_RELEASE >= 27). -define(MODULEDOC(Str), -moduledoc(Str)). -define(DOC(Str), -doc(Str)). -else. -define(MODULEDOC(Str), -compile([])). -define(DOC(Str), -compile([])). -endif. -type order() :: lt | eq | gt. -file("src/gleam/order.gleam", 35). ?DOC( " Inverts an order, so less-than becomes greater-than and greater-than\n" " becomes less-than.\n" "\n" " ## Examples\n" "\n" " ```gleam\n" " negate(Lt)\n" " // -> Gt\n" " ```\n" "\n" " ```gleam\n" " negate(Eq)\n" " // -> Eq\n" " ```\n" "\n" " ```gleam\n" " negate(Gt)\n" " // -> Lt\n" " ```\n" ). -spec negate(order()) -> order(). negate(Order) -> case Order of lt -> gt; eq -> eq; gt -> lt end. -file("src/gleam/order.gleam", 62). ?DOC( " Produces a numeric representation of the order.\n" "\n" " ## Examples\n" "\n" " ```gleam\n" " to_int(Lt)\n" " // -> -1\n" " ```\n" "\n" " ```gleam\n" " to_int(Eq)\n" " // -> 0\n" " ```\n" "\n" " ```gleam\n" " to_int(Gt)\n" " // -> 1\n" " ```\n" ). -spec to_int(order()) -> integer(). to_int(Order) -> case Order of lt -> -1; eq -> 0; gt -> 1 end. -file("src/gleam/order.gleam", 79). ?DOC( " Compares two `Order` values to one another, producing a new `Order`.\n" "\n" " ## Examples\n" "\n" " ```gleam\n" " compare(Eq, with: Lt)\n" " // -> Gt\n" " ```\n" ). -spec compare(order(), order()) -> order(). compare(A, B) -> case {A, B} of {X, Y} when X =:= Y -> eq; {lt, _} -> lt; {eq, gt} -> lt; {_, _} -> gt end. -file("src/gleam/order.gleam", 100). ?DOC( " Inverts an ordering function, so less-than becomes greater-than and greater-than\n" " becomes less-than.\n" "\n" " ## Examples\n" "\n" " ```gleam\n" " import gleam/int\n" " import gleam/list\n" "\n" " list.sort([1, 5, 4], by: reverse(int.compare))\n" " // -> [5, 4, 1]\n" " ```\n" ). -spec reverse(fun((I, I) -> order())) -> fun((I, I) -> order()). reverse(Orderer) -> fun(A, B) -> Orderer(B, A) end. -file("src/gleam/order.gleam", 122). ?DOC( " Return a fallback `Order` in case the first argument is `Eq`.\n" "\n" " ## Examples\n" "\n" " ```gleam\n" " import gleam/int\n" "\n" " break_tie(in: int.compare(1, 1), with: Lt)\n" " // -> Lt\n" " ```\n" "\n" " ```gleam\n" " import gleam/int\n" "\n" " break_tie(in: int.compare(1, 0), with: Eq)\n" " // -> Gt\n" " ```\n" ). -spec break_tie(order(), order()) -> order(). break_tie(Order, Other) -> case Order of lt -> Order; gt -> Order; eq -> Other end. -file("src/gleam/order.gleam", 151). ?DOC( " Invokes a fallback function returning an `Order` in case the first argument\n" " is `Eq`.\n" "\n" " This can be useful when the fallback comparison might be expensive and it\n" " needs to be delayed until strictly necessary.\n" "\n" " ## Examples\n" "\n" " ```gleam\n" " import gleam/int\n" "\n" " lazy_break_tie(in: int.compare(1, 1), with: fn() { Lt })\n" " // -> Lt\n" " ```\n" "\n" " ```gleam\n" " import gleam/int\n" "\n" " lazy_break_tie(in: int.compare(1, 0), with: fn() { Eq })\n" " // -> Gt\n" " ```\n" ). -spec lazy_break_tie(order(), fun(() -> order())) -> order(). lazy_break_tie(Order, Comparison) -> case Order of lt -> Order; gt -> Order; eq -> Comparison() end.